TitleCorresponding Team MemberDescription
Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineeringDaniel JacobsonCRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery.2023-09-26
Establishment of a genome editing tool using CRISPR-Cas9 ribonucleoprotein complexes in the non-model plant pathogen Sphaerulina musivaJoanna TannousCRISPR-Cas9 is a versatile genome editing system widely used since 2013 to introduce site-specific modifications into the genomes of model and non-model species. This technology is used in various applications, from gene knock-outs, knock-ins, and over-expressions to more precise changes, such as the introduction of nucleotides at a targeted locus. CRISPR-Cas9 has been demonstrated to be easy to establish in new species and highly efficient and specific compared to previous gene editing strategies such as Zinc finger nucleases and transcription activator-like effector nucleases. Grand challenges for emerging CRISPR-Cas9 tools in filamentous fungi are developing efficient transformation methods for non-model organisms. In this paper, we have leveraged the establishment of CRISPR-Cas9 genome editing tool that relies on Cas9/sgRNA ribonucleoprotein complexes (RNPs) in the model species Trichoderma reesei and developed the first protocol to efficiently transform the non-model species, Sphaerulina musiva. This fungal pathogen constitutes a real threat to the genus Populus, a foundational bioenergy crop used for biofuel production. Herein, we highlight the general considerations to design sgRNAs and their computational validation. We also describe the use of isolated protoplasts to deliver the CRISPR-Cas9 RNP components in both species and the screening for targeted genome editing events. The development of engineering tools in S. musiva can be used for studying genes involved in diverse processes such as secondary metabolism, establishment, and pathogenicity, among many others, but also for developing genetic mitigation approaches. The approach described here provides guidance for potential development of transformation systems in other non-model spore-bearing ascomycetes.2023-07-25
CRISPR/Cas9-based gene activation and base editing in PopulusXiaohan YangThe genus Populus has long been used for environmental, agroforestry and industrial applications worldwide. Today Populus is also recognized as a desirable crop for biofuel production and a model tree for physiological and ecological research. As such, various modern biotechnologies, including CRISPR/Cas9-based techniques, have been actively applied to Populus for genetic and genomic improvements for traits such as increased growth rate and tailored lignin composition. However, CRISPR/Cas9 has been primarily used as the active Cas9 form to create knockouts in the hybrid poplar clone “717-1B4” (P. tremula x P. alba clone INRA 717-1B4). Alternative CRISPR/Cas9-based technologies, e.g. those involving modified Cas9 for gene activation and base editing, have not been evaluated in most Populus species for their efficacy. Here we employed a deactivated Cas9 (dCas9)-based CRISPR activation (CRISPRa) technique to fine-tune the expression of two target genes, TPX2 and LecRLK-G which play important roles in plant growth and defense response, in hybrid poplar clone “717-1B4” and poplar clone “WV94” (P. deltoides “WV94”), respectively. We observed that CRISPRa resulted in 1.2-fold to 7.0-fold increase in target gene expression through transient expression in protoplasts and Agrobacterium-mediated stable transformation, demonstrating the effectiveness of dCas9-based CRISPRa system in Populus. In addition, we applied Cas9 nickase (nCas9)-based cytosine base editor (CBE) to precisely introduce premature stop codons via C-to-T conversion, with an efficiency of 13%–14%, in the target gene PLATZ which encodes a transcription factor involved in plant fungal pathogen response in hybrid poplar clone “717-1B4”. Overall, we showcase the successful application of CRISPR/Cas-based technologies in gene expression regulation and precise gene engineering in two Populus species, facilitating the adoption of emerging genome editing tools in woody species.2023-07-25
Identifying Fungal Secondary Metabolites and Their Role in Plant PathogenesisJoanna TannousPathogenic fungi are the main infectious agents of plants. Secondary metabolites produced by these fungi, also recognized as natural products, are key mediators of plant-fungal interactions. Knowledge on the biosynthesis of these metabolites, the accessibility to fungal genome sequences, and the development of gene disruption techniques open up opportunities to identify many more of these metabolites both in vitro and in planta. This methodology chapter gives a detailed systematic approach aiming to discover new natural products from phytopathogenic fungi and characterize their role in triggering plant cell death and plant disease. This approach takes advantage of the global regulation of fungal secondary metabolite production by regulatory proteins reported in various fungal species. 2023-07-25
Use of Fluorescent Protein Reporters for Assessing and Detecting Genome Editing Reagents and Transgene Expression in PlantsXiaohan YangFluorescent protein reporters have been widely used for monitoring the expression of target genes in various engineered organisms. Although a wide range of analytical approaches (e.g., genotyping PCR, digital PCR, DNA sequencing) have been utilized to detect and identify genome editing reagents and transgene expression in genetically modified plants, these methods are usually limited to use in the late stages of plant transformation and can only be used invasively. Here we describe GFP- and eYGFPuv-based strategies and methods for assessing and detecting genome editing reagents and transgene expression in plants, including protoplast transformation, leaf infiltration, and stable transformation. These methods and strategies enable easy, noninvasive screening of genome editing and transgenic events in plants.2023-07-25
LaeA-Regulated Fungal Traits Mediate Bacterial Community AssemblyJoanna TannousPotent antimicrobial metabolites are produced by filamentous fungi in pure culture, but their ecological functions in nature are often unknown. Using an antibacterial Penicillium isolate and a cheese rind microbial community, we demonstrate that a fungal specialized metabolite can regulate the diversity of bacterial communities. Inactivation of the global regulator, LaeA, resulted in the loss of antibacterial activity in the Penicillium isolate. Cheese rind bacterial communities assembled with the laeA deletion strain had significantly higher bacterial abundances than the wild-type strain. RNA-sequencing and metabolite profiling demonstrated a striking reduction in the expression and production of the natural product pseurotin in the laeA deletion strain. Inactivation of a core gene in the pseurotin biosynthetic cluster restored bacterial community composition, confirming the role of pseurotins in mediating bacterial community assembly. Our discovery demonstrates how global regulators of fungal transcription can control the assembly of bacterial communities and highlights an ecological role for a widespread class of fungal specialized metabolites.2023-07-25
Expanding the application of anti-CRISPR proteins in plants for tunable genome editingXiaohan YangDear Editor, clustered regularly interspaced short palindromic repeats/CRISPR associated protein (CRISPR/Cas) systems have revolutionized genome engineering in plants via specific control of genetic modifications and transcriptional activities. However, knockout or overexpression of many critical genes may cause pleiotropic effects, which could be limited by conditional and tissue-specific gene modifications. Hence, it is necessary to develop spatially and temporally controllable CRISPR/Cas-based tools for precise genome engineering. Anti-CRISPR (Acr) proteins, natural inhibitors for CRISPR/Cas systems, have utility in biodesign strategies aimed at regulating Cas activities. Acr proteins inhibit CRISPR/Cas activities by either blocking (i) DNA-binding activity or (ii) DNA cleavage activity of Cas proteins. Multiple Acr proteins have been tested in mammalian cells and yeast (Saccharomyces cerevisiae), including AcrIIA4 (inhibits SpCas9), AcrVA1 (inhibits Cas12a), and AcrIIA5 (potentially inhibits all Cas9 orthologs) . Acr proteins can potentially regulate Cas activity at the post-translational level. For example, AcrIIA4 has been used to limit CRISPR/Cas activity to particular environments (e.g. blue-light) in nonplant cells. Also, cell-specific genome editing mediated by CRISPR/Cas9 was achieved through microRNA-dependent expression of Acr proteins in human cells. However, Acrs have not been widely used for tunable genome editing in plants. So far, only AcrIIA4 and AcrVA1 have been evaluated in a single plant species (Nicotiana benthamiana) based on transient expression through leaf infiltration and viral delivery. AcrIIA5 activity remains to be evaluated in plants, and performance differences between transient and stable expression of Acrs remain unanswered. Therefore, we evaluated the performance of AcrIIA4 and AcrIIA5 activities in herbaceous and woody plant species using both transient expression and stable transformation approaches. We tested the effects of AcrIIA4 and AcrIIA5 activities on the SpCas9-based adenine base editor (ABE7) in the herbaceous plants Arabidopsis (Arabidopsis thaliana) and N. benthamiana, and the woody plant hybrid poplar “717” (Populus tremula × P. alba hybrid clone INRA 717-1B4), using both leaf-infiltration and protoplast-based transient expression. The activity of AcrIIA4 on ABE7 was further investigated in Arabidopsis via Agrobacterium tumefaciens-mediated stable genetic transformation.2023-07-25
Biological and molecular components for genetically engineering biosensors in plantsXiaohan YangPlants adapt to their changing environments by sensing and responding to physical, biological, and chemical stimuli. Due to their sessile lifestyles, plants experience a vast array of external stimuli and selectively perceive and respond to specific signals. By repurposing the logic circuitry and biological and molecular components used by plants in nature, genetically encoded plant-based biosensors (GEPBs) have been developed by directing signal recognition mechanisms into carefully assembled outcomes that are easily detected. GEPBs allow for in vivo monitoring of biological processes in plants to facilitate basic studies of plant growth and development. GEPBs are also useful for environmental monitoring, plant abiotic and biotic stress management, and accelerating design-build-test-learn cycles of plant bioengineering. With the advent of synthetic biology, biological and molecular components derived from alternate natural organisms (e.g., microbes) and/or de novo parts have been used to build GEPBs. In this review, we summarize the framework for engineering different types of GEPBs. We then highlight representative validated biological components for building plant-based biosensors, along with various applications of plant-based biosensors in basic and applied plant science research. Finally, we discuss challenges and strategies for the identification and design of biological components for plant-based biosensors.2023-07-25
Diversity and conservation of plant small secreted proteins associated with arbuscular mycorrhizal symbiosisXiaohan YangArbuscular mycorrhizal symbiosis (AMS) is widespread mutualistic association between plants and fungi, which plays an essential role in nutrient exchange, enhancement in plant stress resistance, development of host, and ecosystem sustainability. Previous studies have shown that plant small secreted proteins (SSPs) are involved in beneficial symbiotic interactions. However, the role of SSPs in the evolution of AMS has not been well studied yet. In this study, we performed computational analysis of SSPs in 60 plant species and identified three AMS-specific ortholog groups containing SSPs only from at least 30% of the AMS species in this study and three AMS-preferential ortholog groups containing SSPs from both AMS and non-AMS species, with AMS species containing significantly more SSPs than non-AMS species. We found that independent lineages of monocot and eudicot plants contained genes in the AMS-specific ortholog groups and had significant expansion in the AMS-preferential ortholog groups. Also, two AMS-preferential ortholog groups showed convergent changes, between monocot and eudicot species, in gene expression in response to arbuscular mycorrhizal fungus Rhizophagus irregularis. Furthermore, conserved cis-elements were identified in the promoter regions of the genes showing convergent gene expression. We found that the SSPs, and their closely related homologs, in each of three AMS-preferential ortholog groups, had some local variations in the protein structural alignment. We also identified genes co-expressed with the Populus trichocarpa SSP genes in the AMS-preferential ortholog groups. This first plant kingdom-wide analysis on SSP provides insights on plant-AMS convergent evolution with specific SSP gene expression and local diversification of protein structures.2023-07-25
The promises, challenges, and opportunities of omics for studying the plant holobiontPaul AbrahamMicroorganisms are critical drivers of biological processes that contribute significantly to plant sustainability and productivity. In recent years, emerging research on plant holobiont theory and microbial invasion ecology has radically transformed how we study plant–microbe interactions. Over the last few years, we have witnessed an accelerating pace of advancements and breadth of questions answered using omic technologies. Herein, we discuss how current state-of-the-art genomics, transcriptomics, proteomics, and metabolomics techniques reliably transcend the task of studying plant–microbe interactions while acknowledging existing limitations impeding our understanding of plant holobionts.2023-07-25
Proteomics reveals pathways linked to septoria canker resistance and susceptibility in Populus trichocarpaPaul AbrahamA major threat to forest ecosystems and plantation forestry is the introduction of a non-native pathogen. Among non-domesticated populations with relatively high levels of genetic diversity, a measurable range of susceptibility to resistance can be expected. Identifying genetic determinants of resistant and susceptible individuals can inform the development of new strategies to engineer disease resistance. Here we describe pathogen-induced changes in the proteome of Populus trichocarpa stem tissue in response to Sphaerulia musiva (Septoria canker). This hemibiotrophic fungal pathogen causes stem canker disease in susceptible poplar genotypes. Proteomics analyses were performed on stem tissue harvested across 0-, 12-, 24- and 48-h post-inoculation with Septoria from three genotypes including one resistant (BESC-22) and two susceptible [BESC-801; Nisqually-1 (NQ-1)]. In total, 11,897 Populus proteins at FDR <0.01 were identified across all time points and genotypes. Analysis of protein abundances between genotypes revealed that the resistant poplar genotype (BESC-22) mounts a rapid and sustained defense response involving pattern recognition receptors, calcium signaling proteins, SAR inducers, transcriptional regulators, resistance proteins, and proteins involved with the hypersensitive response. One susceptible genotype (BESC-801) had a downregulated and delayed defense response whereas the second susceptible genotype (NQ-1) lacked a distinct pattern. Overall, the proteome-wide and protein-specific trends suggest that responses to the Septoria canker infection are genotype-specific for the naïve host, Populus trichocarpa.2023-01-04
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression dataDavid KainerGene-to-gene networks, such as Gene Regulatory Networks (GRN) and Predictive Expression Networks (PEN) capture relationships between genes and are beneficial for use in downstream biological analyses. There exists multiple network inference tools to produce these gene-to-gene networks from matrices of gene expression data. Random Forest-Leave One Out Prediction (RF-LOOP) is a method that has been shown to be efficient at producing these gene-to-gene networks, frequently known as GEne Network Inference with Ensemble of trees (GENIE3). Random Forest can be replaced in this process by iterative Random Forest (iRF), which performs variable selection and boosting. Here we validate that iterative Random Forest-Leave One Out Prediction (iRF-LOOP) produces higher quality networks than GENIE3 (RF-LOOP). We use both synthetic and empirical networks from the Dialogue for Reverse Engineering Assessment and Methods (DREAM) Challenges by Sage Bionetworks, as well as two additional empirical networks created from Arabidopsis thaliana and Populus trichocarpa expression data.2022-09-02
An Intein-Mediated Split–nCas9 System for Base Editing in PlantsXiaohan YangVirus-assisted delivery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system represents a promising approach for editing plant genomes. Among the CRISPR/Cas systems, CRISPR/Cas9 is most widely used; however, to pack the relatively large size of the CRISPR/Cas9 system into viral vectors with confined packaging capacity is challenging. To address this technical challenge, we developed a strategy based on split inteins that splits the required CRISPR/Cas9 components across a dual-vector system. The CRISPR/Cas reassembles into an active form following co-infection to achieve targeted genome editing in plant cells. An intein-mediated split system was adapted and optimized in plant cells by a successful demonstration of split-eYGFPuv expression. Using a plant-based biosensor, we demonstrated for the first time that the split-nCas9 can induce efficient base editing in plant cells. We identified several split sites for future biodesign strategies. Overall, this strategy provides new opportunities to bridge different CRISPR/Cas9 tools including base editor, prime editor, and CRISPR activation with virus-mediated gene editing.2022-09-02
Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategiesXiaohan YangPrecise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants. 2022-09-02
Reflection on the challenges, accomplishments, and new frontiers of gene drivesJoanna TannousOngoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms.2022-09-02
Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plantsXiaohan YangGreen fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants.2022-07-27
Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effectsMelissa CreggerThe rapidly growing industry of crop biostimulants leverages the application of plant growth promoting rhizobacteria (PGPR) to promote plant growth and health. However, introducing non-native rhizobacteria may impact other aspects of ecosystem functioning and have legacy effects; these potential consequences are largely unexplored. Non-target consequences of PGPR may include changes in resident microbiomes, nutrient cycling, pollinator services, functioning of other herbivores, disease suppression, and organic matter persistence. Importantly, we lack knowledge of whether these ecosystem effects may manifest in adjacent ecosystems. The introduced PGPR can leave a functional legacy whether they persist in the community or not. Legacy effects include shifts in resident microbiomes and their temporal dynamics, horizontal transfer of genes from the PGPR to resident taxa, and changes in resident functional groups and interaction networks. Ecosystem functions may be affected by legacies PGPR leave following niche construction, such as when PGPR alter soil pH that in turn alters biogeochemical cycling rates. Here, we highlight new research directions to elucidate how introduced PGPR impact resident microbiomes and ecosystem functions and their capacity for legacy effects.2022-05-10
Plant-Based Biosensors for Detecting CRISPR-Mediated Genome EngineeringXiaohan YangCRISPR/Cas has recently emerged as the most reliable system for genome engineering in various species. However, concerns about risks associated with the CRISPR/Cas technology are increasing on potential unintended DNA changes that might accidentally arise from CRISPR gene editing. Developing a system that can detect and report the presence of active CRISPR/Cas tools in biological systems is therefore very necessary. Here, we developed four real-time detection systems that can spontaneously indicate the presence of active CRISPR-Cas tools for genome editing and gene regulation including CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa in plants. Using the fluorescence-based molecular biosensors, we demonstrated that the activities of CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa can be effectively detected in transient expression via protoplast transformation and leaf infiltration (in Arabidopsis, poplar, and tobacco) and stable transformation in Arabidopsis.2021-12-10
Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol ApplicationsJesse LabbeNatural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various “omics” technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields.2021-10-04
Construct Design for CRISPR/Cas-based genome editing in plants.Xiaohan YangCRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing.2021-09-15
Advances and perspectives in discovery and functional analysis of small-secreted proteins in plantsXiaohan YangSmall secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant–microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants2021-07-22
Plant Biosystems Design Research Roadmap 1.0Xioahan YangHuman life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance.2021-05-27
Small RNAs at the Interface of the Plant-Fungal InteractionsJessy L. LabbéFungi and plants interact in a myriad of ways. These interactions range from mutualism to parasitism, and yet, many plant species appear to use similar tools to deal with both. One recent observation is the role that small RNAs play in mediating the conversation between plant and fungus. Increasingly, many studies demonstrate these RNAs are pivotal modulators, reprogramming gene expression and cellular processes essential to the biogenesis of these inter-kingdom relationships. 2021-05-25