Title | Corresponding Team Member | Description | Date Added |
---|---|---|---|
Proteomics reveals pathways linked to septoria canker resistance and susceptibility in Populus trichocarpa | Paul Abraham | A major threat to forest ecosystems and plantation forestry is the introduction of a non-native pathogen. Among non-domesticated populations with relatively high levels of genetic diversity, a measurable range of susceptibility to resistance can be expected. Identifying genetic determinants of resistant and susceptible individuals can inform the development of new strategies to engineer disease resistance. Here we describe pathogen-induced changes in the proteome of Populus trichocarpa stem tissue in response to Sphaerulia musiva (Septoria canker). This hemibiotrophic fungal pathogen causes stem canker disease in susceptible poplar genotypes. Proteomics analyses were performed on stem tissue harvested across 0-, 12-, 24- and 48-h post-inoculation with Septoria from three genotypes including one resistant (BESC-22) and two susceptible [BESC-801; Nisqually-1 (NQ-1)]. In total, 11,897 Populus proteins at FDR <0.01 were identified across all time points and genotypes. Analysis of protein abundances between genotypes revealed that the resistant poplar genotype (BESC-22) mounts a rapid and sustained defense response involving pattern recognition receptors, calcium signaling proteins, SAR inducers, transcriptional regulators, resistance proteins, and proteins involved with the hypersensitive response. One susceptible genotype (BESC-801) had a downregulated and delayed defense response whereas the second susceptible genotype (NQ-1) lacked a distinct pattern. Overall, the proteome-wide and protein-specific trends suggest that responses to the Septoria canker infection are genotype-specific for the naïve host, Populus trichocarpa. | 2023-01-04 |
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data | David Kainer | Gene-to-gene networks, such as Gene Regulatory Networks (GRN) and Predictive Expression Networks (PEN) capture relationships between genes and are beneficial for use in downstream biological analyses. There exists multiple network inference tools to produce these gene-to-gene networks from matrices of gene expression data. Random Forest-Leave One Out Prediction (RF-LOOP) is a method that has been shown to be efficient at producing these gene-to-gene networks, frequently known as GEne Network Inference with Ensemble of trees (GENIE3). Random Forest can be replaced in this process by iterative Random Forest (iRF), which performs variable selection and boosting. Here we validate that iterative Random Forest-Leave One Out Prediction (iRF-LOOP) produces higher quality networks than GENIE3 (RF-LOOP). We use both synthetic and empirical networks from the Dialogue for Reverse Engineering Assessment and Methods (DREAM) Challenges by Sage Bionetworks, as well as two additional empirical networks created from Arabidopsis thaliana and Populus trichocarpa expression data. | 2022-09-02 |
An Intein-Mediated Split–nCas9 System for Base Editing in Plants | Xiaohan Yang | Virus-assisted delivery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system represents a promising approach for editing plant genomes. Among the CRISPR/Cas systems, CRISPR/Cas9 is most widely used; however, to pack the relatively large size of the CRISPR/Cas9 system into viral vectors with confined packaging capacity is challenging. To address this technical challenge, we developed a strategy based on split inteins that splits the required CRISPR/Cas9 components across a dual-vector system. The CRISPR/Cas reassembles into an active form following co-infection to achieve targeted genome editing in plant cells. An intein-mediated split system was adapted and optimized in plant cells by a successful demonstration of split-eYGFPuv expression. Using a plant-based biosensor, we demonstrated for the first time that the split-nCas9 can induce efficient base editing in plant cells. We identified several split sites for future biodesign strategies. Overall, this strategy provides new opportunities to bridge different CRISPR/Cas9 tools including base editor, prime editor, and CRISPR activation with virus-mediated gene editing. | 2022-09-02 |
Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies | Xiaohan Yang | Precise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants. | 2022-09-02 |
Reflection on the challenges, accomplishments, and new frontiers of gene drives | Joanna Tannous | Ongoing pest and disease outbreaks pose a serious threat to human, crop, and animal lives, emphasizing the need for constant genetic discoveries that could serve as mitigation strategies. Gene drives are genetic engineering approaches discovered decades ago that may allow quick, super-Mendelian dissemination of genetic modifications in wild populations, offering hopes for medicine, agriculture, and ecology in combating diseases. Following its first discovery, several naturally occurring selfish genetic elements were identified and several gene drive mechanisms that could attain relatively high threshold population replacement have been proposed. This review provides a comprehensive overview of the recent advances in gene drive research with a particular emphasis on CRISPR-Cas gene drives, the technology that has revolutionized the process of genome engineering. Herein, we discuss the benefits and caveats of this technology and place it within the context of natural gene drives discovered to date and various synthetic drives engineered. Later, we elaborate on the strategies for designing synthetic drive systems to address resistance issues and prevent them from altering the entire wild populations. Lastly, we highlight the major applications of synthetic CRISPR-based gene drives in different living organisms, including plants, animals, and microorganisms. | 2022-09-02 |
Expanding the application of a UV-visible reporter for transient gene expression and stable transformation in plants | Xiaohan Yang | Green fluorescent protein (GFP) has been widely used for monitoring gene expression and protein localization in diverse organisms. However, highly sensitive imaging equipment, like fluorescence microscope, is usually required for the visualization of GFP, limitings its application to fixed locations in samples. A reporter that can be visualized in real-time regardless the shape, size and location of the target samples will increase the flexibility and efficiency of research work. Here, we report the application of a GFP-like protein, called eYGFPuv, in both transient expression and stable transformation, in two herbaceous plant species (Arabidopsis and tobacco) and two woody plant species (poplar and citrus). We observed bright fluorescence under UV light in all of the four plant species without any effects on plant growth or development. eYGFPuv was shown to be effective for imaging transient expression in leaf and root tissues. With a focus on in vitro transformation, we demonstrated that the transgenic events expressing 1x eYGFPuv could be easily identified visually during the callus stage and the shoot stage, enabling early and efficient selection of transformants. Furthermore, whole-plant level visualization of eYGFPuv revealed its ubiquitous stability in transgenic plants. In addition, our transformation experiments showed that eYGFPuv can also be used to select transgenic plants without antibiotics. This work demonstrates the feasibility of utilizing 1x eYGFPuv in studies of gene expression and plant transformation in diverse plants. | 2022-07-27 |
Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects | Melissa Cregger | The rapidly growing industry of crop biostimulants leverages the application of plant growth promoting rhizobacteria (PGPR) to promote plant growth and health. However, introducing non-native rhizobacteria may impact other aspects of ecosystem functioning and have legacy effects; these potential consequences are largely unexplored. Non-target consequences of PGPR may include changes in resident microbiomes, nutrient cycling, pollinator services, functioning of other herbivores, disease suppression, and organic matter persistence. Importantly, we lack knowledge of whether these ecosystem effects may manifest in adjacent ecosystems. The introduced PGPR can leave a functional legacy whether they persist in the community or not. Legacy effects include shifts in resident microbiomes and their temporal dynamics, horizontal transfer of genes from the PGPR to resident taxa, and changes in resident functional groups and interaction networks. Ecosystem functions may be affected by legacies PGPR leave following niche construction, such as when PGPR alter soil pH that in turn alters biogeochemical cycling rates. Here, we highlight new research directions to elucidate how introduced PGPR impact resident microbiomes and ecosystem functions and their capacity for legacy effects. | 2022-05-10 |
Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering | Xiaohan Yang | CRISPR/Cas has recently emerged as the most reliable system for genome engineering in various species. However, concerns about risks associated with the CRISPR/Cas technology are increasing on potential unintended DNA changes that might accidentally arise from CRISPR gene editing. Developing a system that can detect and report the presence of active CRISPR/Cas tools in biological systems is therefore very necessary. Here, we developed four real-time detection systems that can spontaneously indicate the presence of active CRISPR-Cas tools for genome editing and gene regulation including CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa in plants. Using the fluorescence-based molecular biosensors, we demonstrated that the activities of CRISPR/Cas9 nuclease, base editing, prime editing, and CRISPRa can be effectively detected in transient expression via protoplast transformation and leaf infiltration (in Arabidopsis, poplar, and tobacco) and stable transformation in Arabidopsis. | 2021-12-10 |
Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications | Jesse Labbe | Natural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various “omics” technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields. | 2021-10-04 |
Construct Design for CRISPR/Cas-based genome editing in plants. | Xiaohan Yang | CRISPR construct design is a key step in the practice of genome editing, which includes identification of appropriate Cas proteins, design and selection of guide RNAs (gRNAs), and selection of regulatory elements to express gRNAs and Cas proteins. Here, we review the choices of CRISPR-based genome editors suited for different needs in plant genome editing applications. We consider the technical aspects of gRNA design and the associated computational tools. We also discuss strategies for the design of multiplex CRISPR constructs for high-throughput manipulation of complex biological processes or polygenic traits. We provide recommendations for different elements of CRISPR constructs and discuss the remaining challenges of CRISPR construct optimization in plant genome editing. | 2021-09-15 |
Advances and perspectives in discovery and functional analysis of small-secreted proteins in plants | Xiaohan Yang | Small secreted proteins (SSPs) are less than 250 amino acids in length and are actively transported out of cells through conventional protein secretion pathways or unconventional protein secretion pathways. In plants, SSPs have been found to play important roles in various processes, including plant growth and development, plant response to abiotic and biotic stresses, and beneficial plant–microbe interactions. Over the past 10 years, substantial progress has been made in the identification and functional characterization of SSPs in several plant species relevant to agriculture, bioenergy, and horticulture. Yet, there are potentially a lot of SSPs that have not been discovered in plant genomes, which is largely due to limitations of existing computational algorithms. Recent advances in genomics, transcriptomics, and proteomics research, as well as the development of new computational algorithms based on machine learning, provide unprecedented capabilities for genome-wide discovery of novel SSPs in plants. In this review, we summarize known SSPs and their functions in various plant species. Then we provide an update on the computational and experimental approaches that can be used to discover new SSPs. Finally, we discuss strategies for elucidating the biological functions of SSPs in plants | 2021-07-22 |
Plant Biosystems Design Research Roadmap 1.0 | Xioahan Yang | Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance. | 2021-05-27 |
Small RNAs at the Interface of the Plant-Fungal Interactions | Jessy L. Labbé | Fungi and plants interact in a myriad of ways. These interactions range from mutualism to parasitism, and yet, many plant species appear to use similar tools to deal with both. One recent observation is the role that small RNAs play in mediating the conversation between plant and fungus. Increasingly, many studies demonstrate these RNAs are pivotal modulators, reprogramming gene expression and cellular processes essential to the biogenesis of these inter-kingdom relationships. | 2021-05-25 |